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for p-xylene indicate no ionization potential lower than 
about 8.2 eV.39 This same study38 also obtained a 
much lower a2u ionization potential for benzene than 
that calculated by Newton, Boer, and Lipscomb,26 and 
on that basis questioned the calculations. We must 
concur with the criticism and hence have, for instance, 
assumed the transition energy of the u5 -*• 2blsr tran­
sition in /?-xylene-TCNE (Table IX) to be 2.70 eV 
(this effectively pulls orbital w6 down to —8.19 eV, 
within the region expected from ionization potential 
studies). The errors in the calculation, however, are 
rather serious and allow us to make no comments on the 
effects of increased methylation in molecular complexes. 

Three very recent works have been brought to our 
attention dealing with the problem studied here.36,37'40 

Mantione has calculated the inductive contribution to 
the dipole moments37 and the energy of formation36 of 
a rather large number of TCNE-aromatic complexes. 
The form of the perturbation theory used by her does 
not contain a charge-transfer term and is probably 
equivalent to (25), although with a different form of the 

(38) A. D. Baker, D. P. May, and D. W. Turner, J. Chem. Soc, B, 22 
(1968). 

(39) The original paper of Newton, Lipscomb, and Boer26 calculated 
an ionization potential for p-xylene of 6.98 eV, better than the present 
calculation but still subject to the same criticism. The difference in 
calculations is due to a different choice of diagonal Uu matrix elements. 

(40) R. J. W. Le Fevre, D. V. Radford, and P. J. Stiles, J. Chem. Soc, 
B, 1297 (1968). 

The problem of the determination of formation con­
stants and other constants for weak intermolecular 

complexes has received considerable attention during 
the past several years, and for good reason, since the 
proof of existence of such complexes depends largely 
on the obtention of unique values for the formation 
constant k and the extinction coefficient e. The most 
critical discussion is that given by Person,1 who points 

repulsion. Her method of evaluating electrostatic 
terms is much like ours except that she does not include 
7r-quadrupole effects. In fact, comparable terms for 
benzene-TCNE in the Mantione work37 are almost 
identical with those calculated here. Neglect of ir 
quadrupoles, however, gives AEt = —4.80 kcal/mole 
for benzene-TCNE, as compared to the present AE1 = 
— 6.27 and measured AEt = —7.36. Neglect of ir 
quadrupoles would seem important. 

Le Fevre, Radford, and Stiles40 have attempted to 
evaluate the amount of charge transfer in the ground 
state of molecular complexes by attributing that part of 
the measured dipole moment not accounted for by the 
induced moment as being due to charge transfer, and 
hence a measure of the amount of charge transfer in the 
ground state. Their conclusion, that van der Waals 
forces rather than charge-transfer interactions seem 
primarily responsible for the ground-state dipole 
moment, is not in disagreement with our results. We 
do feel, however, that the present state of experimental 
complex dipole moments does not warrant use of this 
procedure as an accurate measure of amount of charge 
transfer. 
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out what some authors seem to have missed: that the 
most accurate values of the formation constant are ob­
tained when the concentration of the complex is ap­
proximately the same as the free concentration of the 
most dilute component. Although Person limited his 
discussion to a consideration of the errors arising when 
the concentrations fell below or above certain limits, 

(1) W.B.Person,/. Am. Chem. Soc, 87,167 (1965). 
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resulting in the inability to determine either k or e 
separately,2 the central idea has more far reaching 
consequences in terms of the assignment of an adequate 
model for the observed interaction. In order for limit 
criteria such as presented by Person to be applicable, 
it is of primary concern to determine that the model 
from which the limit criteria were derived is in fact the 
model correctly describing the experimental situation. 
A further complication arises when the limit criteria 
depend on a prior knowledge of k, a quantity deter­
mined in the experiment and, under certain conditions, 
admittedly incalculable because of the inability to 
separate the product ke. 

In addition to problems generated by insufficient data 
to fit the model properly, other factors have been pos­
tulated to account for observed or suspected anomalies 
in the reported values of k and e. These include de­
viations from Beer's law,3 solvent interactions,4'5 

the presence of complexes with other than 1:1 stoichi-
ometry,w and the use of more exact equations for 
numerical analysis.8'9 It is probable that many of these 
are apparent anomalies arising strictly from the incor­
rect use of the simple Benesi-Hildebrand10 or Scott11 

equations evaluating k and e, especially when multiple 
equilibria might be a contributing factor. In view of 
the considerable diversity of interpretation of these 
anomalous results, it seems pertinent to reexamine 
some of these problems in greater detail. In the pres­
ent paper, we will concern ourselves mainly with a 
simple model, reserving a discussion of a more compli­
cated system for the following paper. 

Basic Relationships. The formation constant of a 
weak molecular complex is commonly determined from 
measurements in which a dilute component P, main­
tained at a fixed total concentration [P0], is "titrated" 
by the addition of a second component X with total 
concentration [X0]. When a 1:1 complex PX is formed 
to the exclusion of all other complexes, the formation 
constant is defined by the usual mass law expression 

[PX] = /C[P][X] = /c([P0] - [PX]X[X0] - [PX]) (1) 

and the entire experiment as [PX] varies from zero to 
[Po] can be conveniently described in terms of the sat­
uration fraction of the dilute component. 

s = [PX]/[Po] = /c[X]/(l + Ic[X]) 0 O O (2) 

The saturation fraction thus defined is identical, in the 
simple case, with the probability of binding,12 or 1 
minus the degree of dissociation of the complex.13 

(2) Although not expressly stated, Person's argument applies as well 
to the separation of the product kSo where 5o is the chemical shift of 
the pure complex in nmr measurements, or to any other similar type of 
analysis. 

(3) P. H. Emslie, R. Foster, C. A. Fyfe, and I. Horman, Tetrahedron, 
21,2843(1965). 

(4) S. Carter, J. N. Murrell, and E. J. Rosch, J. Chem. Soc, 2048 
(1965). 

(5) S. Carter, ibid., A, 404 (1968). 
(6) S. D. Ross and M. M. Labes, J. Am. Chem. Soc, 79, 76 (1957). 
(7) G. D. Johnson and R. E. Bowen, ibid., 87, 1655 (1965). 
(8) N. J. Rose and R. S. Drago, ibid., 81, 6138, 6141 (1959). 
(9) G. Briegleb, "Elektronen-Donator-Acceptor-Komplexe," 

Springer-Verlag, Berlin, 1961. 
(10) H. A. Benesi and J. H. Hildebrand, / . Am. Chem. Soc, 71, 2703 

(1949). 
(11) R. L. Scott, Rec. Trav. CMm., 75, 787 (1956). 
(12) G. Weber in "Molecular Biophysics," B. Pullman and M. Weiss-

bluth, Ed1, Academic Press, New York, N. Y., 1965. 
(13) F. J. C. Rossotti and H. Rossotti, "The Determination of Sta­

bility Constants," McGraw-Hill Book Co., Inc., New York, N. Y., 
1961. 

Equation 2 is the absorption isotherm, and the sec­
ondary concentration variable s is the essential param­
eter underlying Person's argument1 concerning the 
minimum concentrations required to determine mean­
ingful values of k. Person's limits for "region II" 
of O.l/k and 9/k correspond to saturation fractions of 
0.09 and 0.9, respectively, and the half-saturation 
point (s = 0.5) occurs at [X] = l/k. 

Two distinct experimental situations arise from the 
use of eq 2 as it stands, which have been discussed by 
Rose and Drago8 and by Briegleb.9 When the con­
centration of the free (unbound) excess component [X] 
is of the same order of magnitude as the concentration 
of the complex, the substitution [X] = [X0] — [PX] 
is required,14 and eq 2 becomes quadratic in s (or 
[PX]). Conditions are easily arranged, however, such 
that the concentration of complex is negligible com­
pared to the concentration of the excess component, in 
which case the substitution [X] ~ [X0] can be made 
within a specified error. This error is 

(k' - k)/k = -s[Po]/[Xo] (3) 

where k' is the value calculated using the approxima­
tion [X] ~ [X0], and k the value calculated from the 
exact solution [X] = [X0] — [PX]. The error in k 
from this source can never exceed [Po]/[X0] at any value 
of s, and is always negative; that is, k calculated from 
the approximation is always smaller than the true k. 
Because of the undirectionality of this error, it is prob­
ably insufficient to neglect it when it merely falls within 
the experimental error of the measurements,9 except 
where the mean value is not appreciably changed. 
Careful distinction between this type of error and the 
statistical error arising from the measurements them­
selves should be maintained. 

The saturation fraction is usually derived from mea­
surements of some intensive parameter directly pro­
portional to the concentration of the complex.13 An 
appropriate proportionality constant describes this 
correspondence; for optical absorption methods this is 
simply a statement of Beer's law for the complex PX. 
If A is the absorbance and e the proportionality con­
stant, A = e[PX], and when all of the dilute component 
is complexed, the absorbance due to complex will have 
a maximum value Am^ = e[P0]. The saturation frac­
tion is then 

A/Am„ = ^e[P0] = [PX]/[P„] = s (4) 

Combination of eq 4 and eq 2 leads directly to the 
Benesi-Hildebrand10 or Scott11 equations. The situa­
tion for nmr spectroscopy is similar, but in this case the 
observed chemical shift 5 is proportional to the ratio 
of PX to P, and the proportionality constant is the 
chemical shift of pure complex S0. 

5 = 5„[PX]/[P0] 5 / S 0 ^ s (5) 

Combination of eq 5 with eq 2 yields the equation used 
by Hanna and Ashbaugh15 for nmr measurements of 
weak complex formation. 

(14) This limitation does not apply to methods wherein a phase 
separation can be effected between PX + P and X (equilibrium dialysis), 
or PX and P + X (insoluble complex formation) since [X] in this case 
can be obtained directly. 

(15) M. W. Hanna and A. L. Ashbaugh, J. Phys. Chem., 68, 811 
(1964). 
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Figure 1. Per cent relative errors \00Akjk and 100Ae/e = 100A50/ 
S0 as a function of the saturation fraction s. The curves are given 
for As = 0.01, which is equivalent to plotting the reduced relative 
errors AkIkAs and Ae/eAs = ASo/S0As. 

The basic problem rests with the simultaneous de­
termination of two constants. When k is large and 
solubility permits, e or S0 are easily determined inde­
pendently under conditions where P is completely 
complexed, and the assumption of linearity of the 
intensive parameter with the concentration of complex 
can then be tested by dilution of the system under 
similar conditions. In practice, however, this is rarely 
possible, and both k, and e or 50 must be determined 
from paired data or by curve fitting. The consequence 
of the latter limitation is that both the assumption of 
linearity of the intensive parameter with concentration 
and the assumption of 1:1 complex formation must be 
simultaneously verified. A failure of either assumption 
always has as its basis some sort of molecular aggrega­
tion phenomena (self-association, interaction with 
solvent molecules,4,5 or the formation of higher order 
complexes5-7) and phenomenological treatments based 
on deviations from either assumption separately3 are 
redundant since one implies the other. Where ap­
plicable, failure to control activity coefficients9,13 may 
also lead to apparent linearity or nonlinearity, as the 
case may be; this is merely another expression of the 
need to consider molecular aggregation phenomena. 

Errors in k and e or S0. The argument put forward 
by Person1 concerning the regions of the saturation 
curve in which k and e (or S0) are not separable can be 
formalized in terms of the theoretical minimum errors 
in the various parameters. Applying the formula 
for the propagation of errors to the definition of k, 
Weber12 has shown that if the errors in [P0] and [X0] 
are negligible compared to the error in s (or [PX]), 
the relative error in k is practically determined by the 
quantity 

Ak 
Z As U 1 

(1 - s)\ 
(6) 

Similarly, it can be shown that the errors in t and S0 

in terms of s are approximately given by 

Ae/e = 5o/5o ^ Asy/2/s (7) 

again neglecting errors in [X0] and [P0], and using the 
approximation AsJs ~ AAjA or A5/5. It should be 
stressed that the errors given by the equality in eq 6 
and 7 are minimum values, and the obtention of these 

minimum values in an actual experiment is difficult 
to achieve. The relative errors given by the equality 
in eq 6 and 7 are plotted as a function of s in Figure 1, 
from which the basis of Person's limit criteria are im­
mediately obvious. The most accurate values of 
« or 5o are obtained when the concentration of complex 
is maximal (s = 1), but reasonable accuracy can be 
expected above a saturation fraction of 0.2 or so. For 
k, the most accurate values will be obtained when the 
saturation fraction lies between 0.2 and 0.8; outside 
this range the determined values will become extremely 
uncertain.12 In the type of complex formation mea­
surements under consideration, k and t are linked, and 
the "limits" for accurate simultaneous determination of 
both constants are approximately 0.2 ^ 5 ^ 0.8. 

Although Person's conclusions concerning the errors 
in k are in essential agreement with the error analysis 
presented by Weber,12 the criterion that the highest 
concentration of the excess component be not less 
than approximately 0.1 jk is insufficient. It is clear 
from Figure 1 that experimental points obtained as 5 
decreases from s = 0.2 ([X] = 0.25/k) will have pro­
gressively less meaning in the calculation of k or e 
because of their large errors. In an experiment per­
formed between the limits s = 0.1 and s = 0.01, for 
example, the relative error in both k and e will vary be­
tween ± 10 and ± 100%, respectively (with As = 0.01), 
and attempts to obtain accurate values of either param­
eter from the slope and intercept of a suitable plot can 
only end poorly. Thus the assignment of a limit cri­
teria in which only the highest concentration of the ex­
cess component falls within the range of acceptable 
values is untenable. 

Much more important, however, is the fact that the 
line obtained in the region s < 0.1 (or in any other 
limited region) may not be representative of the entire 
experiment. By choosing a relatively narrow range of 
values of 5, nearly any function, no matter how wild, 
can be made to fit a "straight line," and the obtention 
of such a line over a limited portion of the saturation 
curves does not constitute a proof of the model. For a 
weak complex to fit the model "1:1 binding," for 
example, requires that the appropriate linear plot 
actually be linear over the entire range of values 0 ^ 
5 ^ 1 . The point is that measurements of a large portion 
of the saturation curve are required in order to assign 
experimental meaning to the slopes or intercepts of the 
fitted data. The strict application of Person's limit 
criteria are to the line itself, not to the assignment of 
values for k amd e. In other words, a saturation frac­
tion of 0.1 or so must be measured before it is certain 
that the fitted data have a finite slope or intercept within 
experimental error; this has no bearing on the assign­
ment of k or e unless the model is already precisely 
known for other considerations. In the case of mul­
tiple equilibria, for example,16 straight lines are in­
variably obtained at small saturation fractions, but the 
slopes and intercepts of such lines have widely differing 
experimental meaning. 

A result often obtained from statistical analysis of 
experiments over a very small saturation fraction range 
(s < 0.1) is that the intercept (or slope, whichever cor­
responds to the traditionally assigned value "fce") 

(16) See part H: D. A. Deranleau, / . Am. Chem. Soc, 91, 4050 
(1969). 
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appears to have exceptional accuracy, while the slope 
(intercept) is largely in error. This is in reality no 
different from what we have been discussing: values 
obtained near or at the intercept will be accurately 
defined in terms of the line, athough the slope has little 
or no meaning, and the assignment of given stoichi-
ometry is impossible. When the entire saturation 
curve is measured, the errors in the slope or intercept 
have roughly the same statistical error. We note that 
the concept of sharpness of fit as used by Conrow, 
Johnson, and Bowen17 is hardly applicable to very 
limited regions of the saturation curve, especially 
below s ~ 0.1 or so, where with the exception of strong 
cooperative effects, virtually all binding data fit straight 
lines.16 In addition, correct application of normal 
linear regression analysis assumes a priori that the data 
are equally reliable and more or less evenly distributed 
over the entire range of values available to the chosen 
model. When these conditions are satisfied, the fitted 
data are a statement of the correspondence between the 
equation of the line and the equation of the model. 
The use of linear regression analysis to linearly fit part 
of the data similarly describes only the correspondence 
of that part of the equation of the model which happens 
to fit a straight line. In the case of measurements 
below 5 = 0.1, this is commonly interpreted as meaning 
that the other 90% of the data also fit the same line, a 
hazardous extrapolation at best. 

The use of a second method to obtain estimates of k, 
such as nmr spectroscopy, is practical in those cases 
where limited solubility precludes measurements of the 
entire saturation curve. Under identical conditions, 
the optical and nmr methods should give similar results 
for the apparent k, provided that a valid slope or inter­
cept can be measured. When different values are ob­
tained, however, especially under different conditions, 
either (a) insufficient data are available to obtain a 
valid slope or intercept, and/or (b) the model chosen to 
represent the system (e.g., "1:1 binding") is invalid. 
In any case, it is incorrect to assume3 that a better 
value for the extinction coefficient is obtained by division 
of the optical product ke by the nmr k, since exactly 
the same considerations apply to the separation of the 
product kdc, as to ke; that is, the product may well be 
accurately determined, but either value alone may be 
largely in error. 

Criteria for the Proof of Fit of a Given Model. It is 
more or less obvious that measurements of a large 
portion of the saturation curve are required to show 
that the values k and e or S0 calculated from a suitable 
linear plot have experimental significance in terms of a 
given model. The remaining question is how much 
of the theoretically obtainable data are necessary before 
the model, or range of models fitting the same phenom-
enological equation, can be stated with some confidence. 
Since this is fundamentally a problem of acquisition of 
information, it is logical to apply the principles of in­
formation theory to the binding process itself.12 

The information obtained for several probabilities 
P1, M in number, is i s 

Kp) = -K1Z pj In pj E PJ = 1 (8) 
j = i j = i 

(17) K. Conrow, G. D. Johnson, and R. E. Bowen, / . Am. Chem. 
Soc, 86, 1025 (1964). 

(18) L. Brillouin, "Science and Information Theory," Academic 
Press, New York, N. Y., 1962. 

where I(p) = i/N is the information per unit symbol for 
N symbols with average information i. When K = 
(In 2)_ ' , I(p) is given in "bits." For complex forma­
tion there are two probabilities pjt binding and no 
binding;12 hence, M = 2 in eq 8 and since we have 
previously defined the saturation fraction to be identical 
with the probability of binding (eq 2), px = s, p2 = 
1 — s, and 

I(s) = -K[s In s + (1 - s) In (1 - s)] (9) 

The saturation fraction scale can be divided into N 
identical segments of arbitrarily small length ds; a 
particular value of the saturation fraction is then re­
defined as 

Si = nt/N = n£s (10) 

and if I(s,) is the amount of information at a particular 
su the maximum amount of information theoretically 
obtainable12 is clearly the sum over the entire range of s. 

/max = EZ(S 1 ) = [1I(S)(Is (11) 
» = 1 JO 

Similarly, the information at an intermediate value is 

/ = ZKs1) = [S'l(s)ds (12) 
» = i J o 

and the fraction of the total theoretically available in­
formation accumulated as s varies from zero to a par­
ticular value Si is, from eq 9, 11, and 12 

///max = s - s2 In s + (1 - s)2 In (1 - s) (13) 

The rate of accumulation of information can be found 
by normalizing eq 13 with respect to s, obtaining 

/ /*/« . . = 1 + H n s + S-1Cl - s)2 In (1 - s) (14) 

which has a maximum corresponding to 83 % of the 
total possible information at s = 0.76. This point 
represents the optimum in the accumulation of in­
formation concerning the fundamental binding pro­
cesses, and we would like to suggest that measurements 
should be made over roughly 75% of the saturation 
curve before the data can be considered as truly repre­
sentative of the entire experiment. The functions repre­
sented by eq 9, 13, and 14 are shown in Figure 2. It 
should be noted in particular that the fractional in­
formation is less than the corresponding saturation 
fraction below s = 0.5; for an experiment in which data 
are obtained over the region 0 ^ s ^ 0.1 (Person's 
region I ]), the amount of information accumulated is 
only 4% of the total information obtainable, even 
though 10% of the saturation curve has been measured. 
We also note that increasing the number of measure­
ments made in the range 0 ^ s ^ 0.1 does not change 
this situation, as we are dealing with the fraction of 
theoretically accumulated to potentially available in­
formation. The ratio 7//max is independent of the 
number of measurements, which we have purposely not 
specified in order to perform the integrations in eq 11 
and 12. However, if the number of points actually 
measured is less than the number theoretically possible 
(limited by the condition12 ds ^ 2As), the ratio of 
actually accumulated to theoretically possible informa­
tion can only decrease relative to 7//max as defined above. 
Equation 13 as derived therefore represents the upper 
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Figure 2. Information I(s) as a function of s (dotted curve); 
accumulated information relative to total possible information 
(///max) as s varies from 0 -*• 1 (solid curve); and rate of accumula­
tion of information (///max.s) as s varies from 0 -* 1 (dashed curve); 
see text for details. 

Figure 3. Bjerrum's formation function (left) and the Scatchard 
plot (right), in s units. To obtain the curves in the same units as 
given in the text (eq 15 and 16), substitute A[Po] or & for s, and 
multiply the units of the axes containing s by e. The limits, inter­
cepts, and slope are then given directly by eq 15 or 16. The curves 
were calculated for k - 10, and points are shown for equal incre­
ments in j . The error was calculated according to eq 6 with AJ = 
0.01. Note the error is symmetrical with respect to the origin on 
the Scatchard plot (C. de Haen, personal communication). 

limit of possible accumulation of information, and the 
actual experimental situation is usually much worse. 

Choice of Plot and Errors Arising from the Plot. 
Since it is not, in general, possible to calculate the 
saturation fraction for weak complexes without prior 
knowledge of k, the choice of a suitable means of 
graphical presentation is of importance; in fact it is 
only by such means that the range of saturation fraction 
being studied can be easily determined. Of the several 
types of plots resulting from rearrangement of eq 2 
in one of its substituted forms, only three are suitable 
means of data presentation.12,19'20 These are: (a) 
direct plot of Aj[P0] (or S) vs. [X] (absorption isotherm, 
Figure 1 of Person1) according to the observation 
equations 

_A_ = ke[X] 
[Po] 1 + k[X] 

or 5 JdSo[XL 
1 + k[X] 

(15) 

(19) B. H. J. Hofstee, Science, 116, 329 (1952). 
(20) J. T. Edsall and J. Wyman, "Biophysical Chemistry," Vol. I, 

Academic Press, New York, N. Y., 1958. 
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Figure 4. The Benesi-Hildebrand, or reciprocal plot (in s units) 
showing two overlapping regions of the saturation fraction. To 
obtain the usual form of the plot for charge-transfer calculations, 
substitute ^[P0] or S for s and multiply the units of the \/s axis by 
1/e. Points and error bars are as in Figure 3, and k = 10. Note 
the difference in per cent relative error scales. 

Figure 5. The Scott, or half-reciprocal plot (in i units), showing 
two overlapping regions of the saturation curve. To obtain the 
usual form of the plot for charge-transfer calculations, substitute 
A[P0] or 5 for £ and multiply the units of the [X]/s axis by 1 /e. Points 
and error bars are as in Figure 3, and k = 10. 

(b) plot of Aj[P0] (or 5) vs. log [X] (Bjerrum's formation 
function21 or the "titration" curve, Figure 3); (c) 
plot of Aj[P0][X] vs. Aj[P0], or 5/[X] vs. 8 (Scatchard 
plot,22 Figure 3) according to the equations 

[Po][X] 
= k 

A 

[PJ 
or-^- =/c(8o - 5) (16) 

1AJ 

A satisfactory plot is one on which all of the theo­
retically obtainable data can be plotted, whether experi­
mentally obtainable or not, and this criterion is satisfied 
by either the formation function curve or the Scatchard 
plot (Figure 3), the former because of the logarithmic 
scale and the latter because the abscissa varies linearly 
with the saturation fraction. The direct absorption iso­
therm (rectangular hyperbola), the Benesi-Hildebrand 
or reciprocal plot (Figure 4), and the Scott or half-
reciprocal plot (Figure 5) all have open upper limits 
on the abscissa, and the latter two are particularly 
objectionable because they are not curved. This 
means that by either of these two plots, any range of 
values of the saturation fraction can be represented as a 
complete plot. With the formation function curve 
or the Scatchard plot, however, the experimenter is 
not free to choose the scale on which the data are 

(21) J. Bjerrum, "Metal Ammine Formation in Aqueous Solution," 
P. Hasse and Son, Copenhagen, 1941. 

(22) G. Scatchard, Ann. N. Y. Acad. Sci., 51, 660 (1949). 
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plotted, as the proper scale is that which contains all 
of the saturation curve and is visually apparent on both 
these plots. Failure to recognize these facts has led 
to a large amount of confusion in the case of the Benesi-
Hildebrand and Scott plots. As already discussed, 
the smaller the range of saturation fraction being 
studied, the better will be the possibility that a straight 
line is obtained from either of these plots even if the 
entire experiment is represented by a highly curved 
line, which we note specifically is a general character­
istic of equilibria involving other than 1:1 stoichi-
ometry.16 In addition, the Benesi-Hildebrand treat­
ment, and to a lesser degree, the Scott treatment, un­
equally weigh points evenly spaced on the saturation 
fraction scale. For proper evaluation of k by linear 
regression techniques (least squares), the experimental 
points should be obtained for equal increments in 5, 
and weighing factors should be applied to the linear 
regression equations for all data obtained otherwise.23 

In the case of the Benesi-Hildebrand treatment, this is 
particularly disastrous, as each addition of an equal 
increment in s results in an approximate doubling of 
the statistical weight factor. For six successive addi­
tions, for example, the most dilute (and least accurate) 
value will have a statistical weight factor nearly equal 
to that of the four most concentrated values. Linear 
regression analysis of this case without the introduction 
of weighing factors would essentially draw the line 
through only three points, including the two most 
dilute and least accurate values. We note that this 
"reciprocal doubling factor" also drastically reduces 
the chance of seeing curvature in the plot if it is actually 
present. The Scatchard plot has been used previously 
for charge-transfer calculations by Foster and Fyfe,24 

and if a linear plot is desired to fit the data, this plot is 
to be preferred. It should be pointed out, however, 
that an important advantage of this plot is that the 
quality of the fit is immediately apparent provided the 
point 0,0 (origin) is included in the graph, which Foster 
and Fyfe failed to do. The best method of obtaining 
the constants k and e is to fit the observation equation 
(eq 15) directly, as has been clearly demonstrated in the 
important article by Birge.23 This method gives 

(23) R. T. Birge, Rev. Mod. Phys., 19, 298 (1947). 
(24) R. Foster and C. A. Fyfe, Trans. Faraday Soc, 61, 1626 (1965). 

comparable results for k and e with no ambiguity in the 
computed errors, and although slightly more com­
plicated than the straight-line fitting procedure, it has 
been successfully used previously for the computation 
of binding constants.25 

Conclusions 

In summary, we have attempted to pinpoint various 
sources of error arising from the usual methods of 
treatment of weak molecular complexes, and to suggest 
further criteria for the reliability of formation constants 
and extinction coefficients so obtained. In particular, 
the obtention of roughly 75% of the data comprising 
the complete saturation curve seems necessary before 
the model can be considered proven by any single 
equilibrium technique. This conclusion is not re­
stricted to weak molecular complexes, but is generally 
applicable to all cases of complex formation. Similar 
conclusions as those given by the application of in­
formation theory can be obtained in principle by con­
sidering the accuracy of the values of k and/or e, since 
the accuracy & is related to the information through18 

A/ = - J f I n ec = K In a 

where AI is the amount of information obtained and ec 

is the comparative error. 
Of secondary importance are the conclusions con­

cerning the proper choice of plot, the error arising 
from the approximation [X] = [X0], and the comments 
on linear regression analysis. It should be reempha-
sized, however, that the limit criteria given by Person1 

apply not to the values "k," "e," or "ke," but to the 
limiting slope and intercept of the line describing the 
smallest possible measurable range of saturation frac­
tions for which finite, meaningful values can be ob­
tained, and no interpretation in terms of a model can be 
made from such values alone. 
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